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Abstract

Unlike the classic Trading Agent competition (TAC), where
participants enter trading strategies into a market, the TAC

Market Design Competition (CAT) allows participants to cre-
ate rules for their own double auction market and set fees for
traders, which they embody in agents known as specialists.
Although the generalisation properties of traders when the
specialist (i.e., the market mechanism) is fixed have been as-
sessed, generalisation properties of specialists have not. It is
unclear whether and how a specialist might (intentionally or
unintentionally) favour certain trading strategies. We present
an empirical analysis of specialists’ generalisation abilities in
various trading environments. Our results show that special-
ists can be sensitive to a number of factors, including the other
trading and specialist strategies in the environment.

1. Introduction

The growth of e-commerce has led to increased atten-
tion to economic markets from within computer science.
Within economics, the discipline of Mechanism Design uses
methods from mathematical game theory, behavioural eco-
nomics, and computer simulation to aid in the design and
analysis of marketplaces, and of the strategies used by
traders within these markets. One common type of market is
the double auction, in which multiple potential buyers and
sellers place (respectively) bids and asks, seeking to engage
in purchase transactions over some product or commodity.
Double auctions are in use by most of the stock and com-
modity exchanges around the world, although often with dif-
ferent rules. In a global economy, stock exchanges compete
against each other for trading business, and, increasingly,
against new online markets not tied to traditional physical
exchanges.

In such a competitive environment, the precise
rules adopted by a marketplace may have important
consequences—in attracting (or not) traders to the market,
in rewarding (or not) particular trading strategies, and in
facilitating (or not) the matching of shouts (bids and asks),
and the execution of trades in the market. Thus, a detailed
understanding of the different potential rules for double
auction markets and their impacts is important, particularly
if we seek the eventual automation of the design of market
mechanisms. However, the mathematical analysis of the
double auction is intractable, and so computer or human

simulations are currently needed to gain this understanding.

With this in mind, a new research tournament was
launched in 2007 to promote research into automated mech-
anism design: the Trading Agent Competition Market De-
sign (or CAT) Tournament (Gerding et al. 2007). The CAT
Tournament comprises a series of artificial parallel markets,
designed to mirror the competition between global stock
markets. These parallel markets, called specialists, are cre-
ated by entrants to the Tournament, and they compete with
one another to attract and retain traders, who are potential
buyers and sellers of some abstract commodity. The traders
are software agents created and operated by the organisers
of the CAT Tournament, in a reversal of the usual Trading
Agent Competition structure.

In this paper, we describe simulation analyses undertaken
using the CAT Tournament platform JCAT

1 with some of the
specialists entered into the 2008 Tournament. Our primary
research goal is to better understand the characteristics of the
mechanisms used by the specialists, particularly in relation
to the contexts in which they trade, in order to design more
robust mechanisms. Thus, we seek to generalise specialist
capabilities and strengths. Our contribution is to demon-
strate that the specialists in the 2008 CAT Tournament are
not robust against changes in the trader mix, in the competi-
tor mix and in the scoring period. Changing each of these
factors leads to some changes in the tournament ranks and/or
the game scores achieved by the specialists. The market
mechanisms employed by the specialists may thus be seen
not to generalise, and so research will be needed to make
these mechanisms more robust.

The paper is organised as follows. Section 2 presents
a brief summary of the CAT Tournament, and Section 3
presents our research findings in detail. Section 4 presents
our conclusions and proposals for future work.

2. CAT Tournament

The organization and structure of the TAC Market Design
(CAT) Tournament is given in the game documents (Gerding
et al. 2007). Here we briefly mention the most important as-
pects. A CAT game takes place over a number of simulation
trading-days, each of which consists of a number of rounds.
Each round lasts a number of ticks, measured in millisec-

1http://jcat.sourceforge.net/



onds. The game uses a client server architecture, with the
CAT server controlling the progression of the game. CAT
clients are either traders (potential buyers or sellers) or spe-
cialists (aka markets). All communication between traders
and specialists is via the CAT server.

In the standard CAT installation, four different trader
strategies are provided. Zero Intelligence – Constrained
(ZIC) traders (Gode and Sunder 1993) essentially place ran-
dom bids and asks, within constraints. These traders ignore
both the current state of the market and the market history.
Zero Intelligence Plus (ZIP) traders (Cliff 1997) are modi-
fied versions of ZIC traders that seek to remain in profit in
competition with other traders, using some market history.
RE traders (Erev and Roth 1998) use a learning algorithm
based on a model of human learning, with the most recent
surplus or loss guiding the trader’s shouting strategy one step
ahead. Finally, GD traders (Gjerstad and Dickhaut 1998)
use past marketplace history of submissions and transactions
to generate beliefs over the likelihood of any particular bid
or ask being accepted, and use this belief to guide shouting
strategies. ZIC are the least, and GD are the most, sophis-
ticated of these four types. In addition, all types of traders
in the standard CAT installation use an n-armed bandit strat-
egy (Robbins 1952) for selecting which specialist to register
with on each new trading day.

Specialists have freedom to set market rules in six broad
policy areas: Charging policy: What charges and fees are
imposed by the specialist on traders? Quote policy: What
limitations, such as a lower bound for bids, does the spe-
cialist impose on shouts by traders? Shout accepting pol-
icy: When does a specialist accept a shout made by a trader?
Matching policy: How does the specialist match bids and
asks made by traders? Pricing policy: What are the trans-
action prices for matched bid-ask pairs? Clearing policy:
When does the specialist clear the market and execute trans-
actions between matched bids and asks? Following the 2007
CAT Tournament, (Niu et al. 2008a) undertook a series of
simulations to infer the policies of the specialists entered
in the game.In addition, the research teams behind two of
the 2007 CAT specialists have written about their strategies
(Petric et al. 2008; Vytelingum et al. 2008).

In the CAT Tournament, specialists know that each trader
is one of the four types, but they do not know the overall pro-
portions of each type. Accordingly, the design of a specialist
seeking to win the game cannot be optimised for only a sub-
set of trading strategies. In addition, the scoring metric used
by the game is multi-dimensional. Games are scored using
an unweighted average of three criteria: the proportion of
traders attracted to the specialist each day (market share);
the proportion of accepted shouts which are matched (trans-
action success rate); and the share of profits made by the
specialist. As with trader types, this multi-dimensionality
creates challenges for the optimal design of specialists, since
these criteria may conflict. A game-winning strategy may
focus on scoring highly on different criteria at different times
in the life-cycle of a game, or against different types of
traders.

Given this game structure, it is easy to see that some spe-
cialists may perform better with traders of a particular type,

and/or against competing specialists using particular poli-
cies. Because the actual CAT Tournaments are only con-
ducted over a limited number of games (typically, three), the
performance of a specialist in the Tournament is not neces-
sarily a good guide to that specialist’s general ability, i.e.,
with other trader mixes, or in competition against different
specialists. Niu et al. (2008b), for example, have shown
that some of the well-performing 2007 CAT specialists have
weaknesses in other situations. Specialists may, therefore,
be considered brittle (or obversely, robust), if their perfor-
mance greatly depends (or does not) on the competitive and
trader context.

In this paper, we explore via simulation the extent to
which the performance of specialists in the 2008 Tourna-
ment may generalise across competitive and trader contexts,
with the aim of creating more robust specialists.

3. An Empirical Evaluation of the

Generalisation Ability of the Entries

General Experimental Setup

Each JCAT simulation consists of a single tournament that
runs for a number of trading days, with, in our experiments,
10 rounds per day and 500ms per round. All experiments
were carried out with both the JCAT server and all clients
situated on the same local machine. The trading population
size was set at 400 traders, filled with traders taken from
the four types described in Section 2.. Buyers and sellers
were split as evenly as possible in the different trader sub-
populations. Each of the traders’ private values for goods
were decided by drawing from a uniform distribution, a
value between 50 and 150. In order to achieve statistically
significant results for each tournament variation, each varia-
tion is repeated 15 times, using the same configuration.

The specialist agents we used in our experiments were
downloaded in a pre-compiled form from the TAC Agent
Repository2. Specifically, we used entries from the
2008 competition, except when this was not possible3.
The following specialists were included in our experi-
ments: CrocodileAgent, DOG, iAmWildCat 2008,
Mertacor1, Mertacor2, PSUCAT, PersianCAT and
jackaroo. In the rest of this section we will often refer to
them as CR, DO, IA, M1, M2, PS, PC and JA respectively.

As defined in Section 2., each day every specialist receives
a score based on three criteria. A specialist’s tournament
score is the sum of its daily scores for all scoring days. Spe-
cialists are ranked in descending order of their total scores,
with the specialist in rank 1 declared the winner of that tour-
nament. To show that some specialists’ performances can
be sensitive to a number of factors, and in some cases gen-
eralise poorly, we measure differences in specialist perfor-
mance across different tournament variations. Specifically,
we look for two differences: firstly we measure the qual-

2http://www.sics.se/tac/showagents.php
3We were unable to use the following specialists:

BazarganZebel (binary corrupted); Hairball (not sub-
mitted to repository); MANX (requires unavailable libraries);
MyFuzzy (unable to disable X output).



itative impact tournament variations have on each special-
ist’s performance, which we achieve by comparing rankings
of specialists’ mean scores for different (comparable) tour-
nament configurations. Secondly, we measure the perfor-
mance impact, i.e., the change that tournament variations
have on each specialist’s score. It is clear that since the dif-
ferences introduced between tournament variations—e.g.,
the proportions of trader types in the trading population—
itself contributes to the performance of the specialists, one
cannot simply compare the mean scores of specialists over
tournament variations and confidently state how the special-
ists are able to generalise between the two cases.

Our response to this challenge is to define a new statistic
to measure the performance of one specialist relative to oth-
ers, across a diversity of tournament variations. Our statistic,
which we call the normalised performance delta of a special-

ist, denoted δ̊, provides a metric for analysing how a given
tournament configuration affects the performance of the spe-
cialist. To calculate this statistic, we first calculate for each
specialist i, the normalised mean score µ̊i.

µ̊i =
µi

m∑

j=1

µj

(1)

For a single specialist i, given two normalised scores µ̊x
i

and µ̊
y

i from two tournament variations x and y, we can cal-
culate the absolute difference d

xy

i between the two scores.

d
xy

i = |̊µx
i − µ̊

y

i | (2)

d
xy

i gives us an understanding of how, with respect to
other specialists in the tournament, a specialist i’s perfor-
mance has changed from one tournament variation to the
next. Finally, for each specialist i we calculate the nor-

malised difference value δ̊i.

δ̊i =
d

xy

i
m∑

j=1

d
xy

j

(3)

In order to ascertain some statistical significance to spe-
cialist mean score values generated from multiple tourna-
ment runs, two-tailed paired t-tests of equality of means
were performed on certain pairs of specialists, in order to
attempt to identify whether the reported rankings were dis-
tinct. In such cases both the t-value and p-value (using
n − 1 df.) are reported. These tests assume normality in the
distribution of the underlying random variables. However,
even if the variables are from other distributions, the tests
are still approximately correct (Moses 1986) (p.197–198);
(Devroye 1986) (p.362).

Over-fitting to trading population

In the following set of results, we show that some special-
ists’ performances are sensitive to different mixes of trader
types in the trader population, and as such some special-
ists may be over-fitted to specific types or mixes of traders.
For this set of experiments, all of the specialists available

were used. We ran a number of tournament variations, each
of which consisted of differing proportions of individual
trader types. In these tournaments, all 500 trading days were
counted as scoring days. Overall, we found that several of
the specialists’ final rankings were affected by variations,
particularly jackaroo, Mertacor1 and Mertacor2.

Table 1 shows the results of two tournament variations,
which we refer to as ‘justGD’ and ‘noGD’. The justGD vari-
ation consisted of a trading population made up of entirely
GD traders, with equal buyers and sellers. In the noGD vari-
ation, the trading population was composed of 133 ZIP, 133
RE and 134 ZIC traders. There were an equal number of
ZIC buyers and sellers, while the RE (ZIP) sub-populations
had 67 (66) sellers respectively.

Just GD No GD
Traders Traders

Spe µ σ µ σ Rank δ̊

PC 232.2 5.86 271.1 5.51 1, 1 0.355
M1 230.9 6.55 193.9 3.17 2, 4 0.364
JA 218.9 6.06 213.5 2.65 3, 3 0.064
M2 207.4 5.09 215.7 6.05 4, 2 0.067
IA 165.8 1.45 165.1 5.15 5, 6 0.016
DO 164.4 2.24 173.7 2.48 6, 5 0.078
CR 24.9 17.76 19.1 8.28 7, 7 0.057
PS 16.2 0.66 16.3 0.43 8, 8 0.001

Table 1: Mean, standard deviation, rank and δ̊ values for a
set of tournaments with just GD traders and a set of tourna-
ments with no GD traders.

For a typical tournament variation, we found that in each
of the n repetitions, scores, and thus rankings, were quite
similar, leading to low σ values. It is extremely unlikely
that scores would ever be identical over all runs due to the
stochastic nature of the JCAT environment. Table 1 high-
lights the fact that the overall rankings for the two tourna-
ment variations were different, most notably with changes
in the middle and lower portions. Qualitatively, we found of
particular interest was the change in rank between M1, M2
and JA. In the justGD case, M1 was rank 2 and M2 rank 4,
while in the noGD case the ranks were swapped to 4 and 2
respectively. In the justGD case, a paired t-test showed that
the average scores of M1 and M2 were significantly different,
with a t-value of 9.36 and a p-value < 0.0001. The average
scores of M1 and M2 were 230.9 and 207.4 respectively. In
the noGD case, the t-test resulted in a t-value of 14.04 and
a p-value < 0.0001. Average scores in the noGD case were
193.9 for M1 and 215.7 for M2.

Further, in the justGD case we found that M1 and JA had
ranks of 2 and 3 respectively, while in the noGD case they
had ranks of 4 and 3. In the justGD case, for M1 and JA, a
t-test resulted in a t-value of 19.09 and a p-value < 0.0001,
with mean scores of 230.9 for M1 and 218.9 for JA. In the
noGD case, a t-test reported a t-value of 4.20 and a p-value
<0.0001, with mean scores of 193.9 for M1 and 213.5 for
JA.

Finally, we note that even a simple change of the trading



population, i.e., justGD, can make a previous winner, PC,
lose its winning edge. Statistically, PC is not the clear win-
ner in the justGD case. A t-test of equality of means between
PC and M1 in the justGD case showed a t-value of 0.46 and
a p-value of 0.65, with mean scores of 232.2 for PC and
230.9 for M1. A counterpart to this situation is the noGD
case, where PC clearly outperformed M1. Here the t-value
was 38.31 and p-value < 0.0001, with mean scores of 271.1
for PC and 193.9 for M1. This highlights a situation where
either PC or M1 are particularly sensitive to the proportions

of GD traders in the population. The δ̊ values for PC (0.355)
and M1 (0.364) were considerably larger than those of the
other specialists, showing a disproportionate change in per-
formance over the two cases for both specialists.

In Table 2 we show the results of two different tournament
variations: ‘justZIC’ and ‘noZIC’. In the justZIC variation
we used all specialists and a trader population containing
only ZIC traders (equal number of buyers and sellers). The
noZIC variation used all specialists, but the trader popula-
tion contained 133 GD, 133 RE and 134 ZIP traders, with
an equal numbers of ZIP buyers and sellers and 67 (66) GD
(RE) sellers respectively.

Just ZIC No ZIC
Traders Traders

Spe µ σ µ σ Rank δ̊

PC 276.2 11.47 244.1 4.53 1, 1 0.419
JA 218.6 4.71 214.6 2.49 2, 3 0.071
M2 213.9 8.20 224.7 5.77 3, 2 0.109
M1 192.1 2.72 207.0 3.76 4, 4 0.160
DO 170.7 2.62 180.0 2.32 5, 5 0.095
IA 161.6 5.15 170.7 4.09 6, 6 0.094
PS 16.9 0.46 16.2 0.47 7, 8 0.010
CR 16.8 5.07 20.4 7.90 8, 7 0.041

Table 2: Mean, standard deviation, rank and δ̊ values for a
set of tournaments with just ZIC traders and a set of tourna-
ments with no ZIC traders.

We found another situation when it is not statistically
clear that the rankings between two specialists are the same
across the two tournament variations, indicating that there
were generalisation problems. In the noZIC case, we found
that M2 (rank 2) outperformed JA (rank 3). A paired t-test
of equality of means found the scores statistically different,
with a t-value of 5.83 and a p-value < 0.0001. The mean
scores were 224.7 for M2 and 214.6 for JA. However, in the
justZIC case we found that the mean scores between the two
specialists, and thus the rankings, were not statistically dis-
tinct. A paired t-test results in a t-value of 1.75 and a p-value
of 0.10. The mean scores were 213.9 for M2 and 218.6 for
JA.

Table 2 also highlights a clear example of the performance
impact that changes in the trader population can have on a
specialist. The mean score for PC in the justZIC case was
276.2, yet this dropped 8.83% to 244.1 in the noZIC case.
Of course, the makeup of the trader population can have a
significant impact on the scores of specialists, but in these

two cases we see that other specialists’ scores did not vary
proportionally as much as PC’s. By considering the per-
formances changes of the other specialists, PC’s normalised

delta value δ̊ was 0.419, which was considerably higher than
the others’.

We highlight in Table 3 other qualitative impacts that
changes in the trader population had on specialists. In these
tournament variations we considered the cases ‘justZIP’ and
‘noZIP’. In the justZIP variation we used all specialists and
a trading population consisting of only ZIC traders (equal
number of buyers and sellers). In the noZIP variation all
specialists were used but the trading population contained
133 GD, 133 RE and 134 ZIC traders, with an equal num-
ber of ZIC buyers and sellers, and 67 (66) GD (RE) sellers
respectively.

Just ZIP No ZIP
Traders Traders

Spe µ σ µ σ Rank δ̊

PC 255.7 12.18 255.9 5.17 1, 1 0.051
JA 231.3 5.02 211.5 4.37 2, 3 0.281
M1 208.0 5.86 199.0 4.19 3, 4 0.150
M2 189.0 5 221.9 6.94 4, 2 0.347
IA 169.7 3.16 173.5 4.34 5, 6 0.008
DO 164.1 4.86 179.7 2.4 6, 5 0.147
CR 17.0 6.35 16.1 5.04 7, 8 0.014
PS 16.2 0.65 16.3 0.4 8, 7 0.003

Table 3: Mean, standard deviation, rank and δ̊ values for a
set of tournaments with just ZIP traders and a set of tourna-
ments with no ZIP traders.

In the justZIP case we found that M1 (rank 3) outper-
formed M2 (rank 4). A t-test resulted in a t-value of 10.35
and a p-value < 0.0001. The mean scores for M1 and
M2 were 208.0 and 189.0 respectively. However, in the
noZIP case we again see a different outcome, with the ranks
changed to 2 for M2 and 4 for M1. In this case, a t-test
resulted in a t-value of 9.56 and a p-value < 0.0001, with
means of 221.9 for M2 and 199.0 for M1.

Over-fitting to other specialists

In this set of results, we show that when the proportions of
traders in the trader population remain fixed, some special-
ists’ performances are sensitive to the presence of other spe-
cialists in the marketplace. For this set of experiments, we
used a fixed trader population containing an equal mix of
GD and ZIC traders. Since ZIC traders are the least, and
GD the most, sophisticated trader types, using this mix may
offer the most diverse trading environment. In these tourna-
ments, all 500 trading days were counted as scoring days.

In Table 4 we see the effects that removing the bottom
five specialists had on the remaining three. We particularly
note the effect that lower-ranked specialists had on the per-
formance of JA and M2. For example, when all specialists
were present, JA outperformed M2. A t-test of equality of
means showed a t-value of 4.12 with a p-value of 0.0010.



All Just
Specialists PC, JA & M2

Spe µ σ µ σ Rank δ̊

PC 267.34 5.99 299.74 6.96 1, 1 0.361
JA 217.46 4.44 243.5 3.51 2, 3 0.293
M2 206.93 6.44 256.72 5.82 3, 2 0.347
M1 198.31 2.79 – – 4, – –
DO 174.45 2.81 – – 5, – –
IA 170.59 3.51 – – 6, – –
CR 18.86 5.21 – – 7, – –
PS 16.08 0.29 – – 8, – –

Table 4: Mean, standard deviation, rank and δ̊ values for
a set of tournaments with all specialists and a set of tour-
naments with just PC, JA and M2. The trader population
consisted of an equal mix of GD and ZIC traders.

Mean scores for JA and M2 were 217.5 and 206.9 respec-
tively. Alternatively, when the lower five specialists were
removed, and the remaining three compete with the same
traders, we found that the rankings of JA and M2 switched.
In that case, a t-test resulted in a t-value of 8.30 with a p-
value < 0.0001. Mean scores for JA and M2 were 243.5 and
256.72 respectively.

In Table 5 we can observe the effect that removing the top
three specialists had on the remaining bottom five. In a qual-
itative context, IA did significantly better than DO when the
top three specialists were not present, with a t-test revealing
a t-value of 5.80 and a p-value < 0.0001. The average score
for IA was 215.0, while DO scored 208.7. However, when
the top three specialists were present, DO ranked higher than
IA (t-value = 3.31, p-value = 0.0051). The average score for
IA was 170.6, while DO scored 174.5.

With respect to the performance impact that the two tour-
nament variations had on specialists, it is clear that the in-
clusion (or likewise, exclusion) of the three specialists PC,
JA and M2 clearly affected the performance of M1 more
than any of the remaining four. When the top three spe-
cialists were introduced, all of the other specialists’ scores
were lower, however a high normalised delta value of 0.525
for M1 indicated it was considerably more sensitive to their
presence.

Over-fitting to scoring period

Our final results show that some specialists’ performances
were affected by the choice of trading days used as scor-
ing days. In Sections 3.and 3.we maintained a fixed scoring
period of 500 days and varied either the specialist or trader
populations. In these results we take simulations from the
previous sections, and adjust the scoring period from which
the specialists’ scores are generated. Specifically, we mea-
sured performance over the scoring day period 1–100 and
100–380.

Table 6 shows the effect changing the scoring period had
on the performance of the specialists. In these two varia-
tions we used all specialists and a trading population con-
taining just ZIC traders, with an equal number of buyers and

All No
Specialists PC, JA or M2

Spec µ σ µ σ Rank δ̊

PC 267.3 5.99 – – 1, – –
JA 217.5 4.44 – – 2, – –
M2 206.9 6.44 – – 3, – –
M1 198.3 2.79 376.3 4.17 4, 1 0.525
DO 174.5 2.81 208.7 1.5 5, 3 0.198
IA 170.6 3.51 215.0 3.86 6, 2 0.217
CR 18.9 5.21 32.9 10.22 7, 7 0.044
PS 16.1 0.29 18.2 0.32 8, 8 0.016

Table 5: Mean, standard deviation, rank and δ̊ values for a
set of tournaments with all specialists and a set of tourna-
ments with all specialists except PC, JA and M2. The trader
population consisted of an equal mix of GD and ZIC traders.

sellers. For all specialists, as you would expect, scores for
days 1–100 were much lower than the 100–380 tournament
because the 1–100 scoring period is less than a third shorter.
We found that many of the specialists’ ranks changed be-
tween the two cases, and highlight specifically JA and M2.
If specialists were ranked according to their score from the
earlier period, we found that JA had a rank of 3, while M2
had a rank of 2. A t-test tells us these means were statisti-
cally different; the t-test resulting in a t-value of 10.42 and a
p-value < 0.0001, with mean scores of 46.0 for M2 and 39.8
for JA. Alternatively, if specialists were ranked using the
scoring period 100–380 the ranks of M2 and JA switched.
Again, in this case we found a t-test of equality of means
revealed that the scores are statistically distinct, resulting in
a t-value of 3.34 and a p-value of 0.0048.

Day Day
1–100 100–380

Spec µ σ µ σ Rank δ̊

PC 50.8 1.94 158.6 7.34 1, 1 0.190
M2 46.0 1.86 118.8 5.19 2, 3 0.025
JA 39.8 0.81 124.4 3.34 3, 2 0.150
M1 39.5 1.01 107.7 1.80 4, 4 0.056
IA 35.0 1.19 89.1 3.72 5, 6 0.011
DO 34.0 1.09 96.4 1.46 6, 5 0.069
PS 16.9 0.46 0.00 0.00 7, 8 0.251
CR 16.8 5.07 0.00 0.00 8, 7 0.249

Table 6: Mean, standard deviation, rank and δ̊ values for a
set of tournaments with scoring days 1–100 and a set of tour-
naments with scoring days 100–380. The trader population
consisted of just ZIC traders.

Discussion

We have presented in this paper a methodology that allows
us to evaluate and compare agents’ generalisation abilities



systematically and quantitatively. We believe that this ap-
proach is the first to allow such properties to be measured—
especially in a coevolutionary context. Further, there are
several reasons why such an approach is important. Firstly,
without such an approach it is hard to know the true perfor-
mance of any particular agent strategy. This is because with-
out a methodology such as ours one cannot see how well
a strategy performs against unknown or previously unseen
competing strategies, i.e., how well a given strategy gener-
alises and thus its ‘robustness’; in our results we have shown
that some seemingly strong strategies can have weaknesses
when competing with certain other strategies. This is inter-
esting because it is clear from the literature that often ‘best
strategies’ or ‘best results’ are published, and without any
further elaboration on their generalisation ability these re-
sults can be very misleading. Secondly, although it is may
seem obvious that the performance of any given strategy—
whether in the CAT game or some other competitive multi-
agent system—will depend on the strategies being used by
other agents, it is never clear how strong this dependency is,
or the resulting quantitative values such a dependency pro-
vides. Finally, we note that our approach’s significance can
be demonstrated by emphasising that our results concur with
the assumption that the performance of agents will depend
on the strategies being used by their competitors, thus it is a
sensible one.

Previously, Vetsikas and Selman (2003) presented a
methodology for deciding on the best strategy that their
agent, WhiteBear, should use in the TAC classic game4.
The authors decompose the overall bidding-agent problem
into a smaller sub-problems, e.g., decide on the quantity of
a good to buy, and then determine the best strategy given
those quantities. One of the reasons that TAC is so hard for
an agent is that there are multiple concurrent auctions taking
place using a variety of rules. Their approach was to tackle
each auction independently by generating a set of boundary
strategies for each auction or good (an example of a bound-
ary strategy might be ‘bid-low’ or ‘bid-high’). From these
partial strategies they then generated intermediate strategy
variants, which lay between the boundary strategies. Multi-
ple experiments were carried out to test different strategies
in the presence of differing numbers of other strategies. Al-
though this approach is sensible when trying to decide on the
best strategy from an initial set of possible strategies, it is un-
clear how well such a best strategy would fair against unseen
strategies, i.e., other competitors in the trading competition.
Indeed, unlike the approach in this paper, theirs provides no
such mechanism to test the robustness of a strategy in the
presence of unseen competitors.

Wellman et al. (2005) explore the idea of using a reduced
strategy space to allow them to evaluate potential strategies
taken from their TAC agent, Walverine. They hypothe-
sise that although a strategy’s performance depends on the
strategies being used by other competitors, it may be rela-
tively insensitive to the number of competitors using identi-
cal competing strategies. To that end Wellman et al. intro-
duce a methodology that explores a reduced number of pos-

4http://www.sics.se/tac/page.php?id=3

sible profiles—where a profile defines the type of strategies
in use in a population and their frequency. They find that by
reducing the strategy space, they can efficiently search the
remaining space to find the strategies that can outperform
the others. Although such an approach is very appropriate
when considering a fixed initial space of potential strategies
(in their case 35) as with the methodology in Vetsikas and
Selman it is hard to say how well the found strategies would
generalise to previously unseen ones, such as those faced in
competitions.

Given the two previously discussed methodologies there
are several reasons why our approach is novel. Firstly, the
CAT game is more complicated than the original TAC game
because there are two interacting populations—specialists
and traders, both of whom contain (or could contain) mem-
bers able to learn and/or evolve. Thus our approach is the
first to look at a situation where there are coevolving popu-
lations of competing agents, and offer insights into the ro-
bustness of the strategies in those populations. Secondly, to
even define what ‘robustness’ of a trading or specialist strat-
egy means is not straightforward in such a coevolutionary
context, let alone to actually measure such a property in a
systematic and rigorous way. Our approach, unlike the pre-
viously discussed ones, is the first to look at how well such
designed strategies generalise to previously unseen strate-
gies, using the CAT competition as a case-study. Indeed, we
believe that our approach can be used for analysing the gen-
eralisation properties of strategies in not only other agent-
based competitions, but in any agent-based simulation mod-
els within an economic domain.

4. Conclusions and Future Work

To our knowledge, the generalisation property of specialists
(i.e., market mechanisms) has not been studied in the lit-
erature. Traditionally, economic mechanism design theory
has dealt with the generalisation issue by seeking mecha-
nisms which are incentive-compatible (i.e., which encour-
age truth-telling) and by assuming that all traders are al-
ways rational and self-interested. An incentive-compatible
mechanism with rational, self-interested traders should gen-
eralise across trader strategies and types. However, because
computer software is always resource-constrained and bug-
prone, the designers of computational mechanisms cannot
assume that traders always act rationally or in their own self-
interest. Moreover, economic mechanism design theory has
not considered competition between mechanisms, and so has
not explored generalisability of mechanisms over competing
mechanisms. Within computer science, Niu et al. (2007)
considers the choices automated traders will make when
faced with several competing online marketplaces, show-
ing that although traders typically gravitate towards low-
charging markets, such markets may lose their dominance
when not all traders are experienced or do not all have ac-
cess to full information.

Thus, the research reported here has tried to explore the
generalisation properties of market mechanisms, using the
2008 CAT Tournament specialists as the basis. It is unclear
whether and how a market mechanism might (intentionally



or unintentionally) favour certain trading strategies, or facil-
itate or inhibit other competing market mechanisms. A spe-
cialist which performs well under one particular tournament
setup may not perform well if the setup changes slightly.
Therefore, it is essential to study and understand any hidden
bias that a specialist might have built into it.

In order to achieve this we ran many JCAT simulations us-
ing a variety of configurations, including changing both the
trader and specialists populations as well as changing the pe-
riod used to generate specialist scores. This paper shows for
the first time how changes in the competition configuration
can have an impact on specialists’ performances in both a
qualitative and quantitative context.

Our results showed that specialists can be sensitive (and
specialised) to a number of factors in the competition, in-
cluding the trading strategies used in assessing specialists,
other specialists that one competes against and the scoring
period. Such results indicate that an appropriate evaluation
of such a competition (and other similar ones) would need a
theoretically sound framework, which can measure special-
ists’ generalisation abilities quantitatively. They also point
out the importance in analysing the relationship between a
winning specialist and the particular competition setup used,
so that insights into what makes a specialist better/worse can
be gained.

Although we have studied three major issues that have
a significant impact on specialists’ performance from the
viewpoint of generalisation, there are other issues to be con-
sidered, e.g., the performance metric used. It is very interest-
ing to study as the next step the potential trade-offs between
market share and total profit. A multi-objective approach
could be used to study these trade-offs. In terms of a the-
oretical framework for measuring specialists’ generalisation
quantitatively, we will investigate the possibility of adopt-
ing the one for measuring strategies’ generalisation ability
(Chong, Tino, and Yao 2008).
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