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Abstract

Our research is focused on the effects of the addition
of procurement information (offer prices) to a sales-
based economic regime model. This model is used
for strategic, tactical, and operational decision mak-
ing in dynamic supply chains. We evaluate the perfor-
mance of the regime model through experiments with
the MinneTAC trading agent, which competes in the
TAC SCM game. The new regime model has an over-
all predictive performance which is equal to the per-
formance of the existing model. Regime switches are
predicted more accurately, whereas the prediction ac-
curacy of dominant regimes does not improve. How-
ever, because procurement information has been added
to the model, the model has been enriched, which gives
new opportunities for applications in the procurement
market, such as procurement reserve pricing.

Introduction
Nowadays, markets are extremely competitive, and thus
it is important to gain insight into the dynamics of
supply chains and to research supply chain optimiza-
tion possibilities, both for individual elements in the
chain, as well as for the chain as a whole. For instance,
in correctly predicting future market conditions, i.e.,
economic regimes (Ketter 2007), lie competitive advan-
tages, e.g., one can anticipate on upcoming scarcities
in the sales market by adjusting procurement policies
and sales prices in advance. This can save for instance
storage costs, and increase profits. Thus, one could
benefit greatly from being able to make tactical and
strategic decisions in an uncertain market, based on
identified and predicted economic regimes. Combining
techniques from computer science with economic theory
to solve problems in economic environments contributes
to novel approaches to existing problems.

Ketter introduced an economic regime model, which
is based on sales information (Ketter 2007). This model
can be applied to any real or simulated market situa-
tion. However, procurement information has not been
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used sofar for identifying and predicting regimes. This
information is truly valuable for determining economic
regimes, since it captures specific market characteris-
tics. For instance, an increase in the amount of compo-
nents sold in the procurement market could indicate an
expected scarcity in the sales market, as manufacturers
are building stocks.

We present an extension to the regime model as in-
troduced by Ketter, which is implemented in the Min-
neTAC trading agent (Collins, Ketter, and Gini 2009).
We investigate the effects of adding procurement infor-
mation to this model. The performance of the regime
model is evaluated through experiments on the quality
of regime probability predictions, and checking correla-
tions with existing market conditions.

The MinneTAC trading agent has competed for sev-
eral years in the Trading Agent Competition for Sup-
ply Chain Management (TAC SCM). TAC SCM is an
annual international competition for designing trad-
ing agents for a simulated personal computer supply
chain (Collins et al. 2005). The supply chain includes
customers, traders, and suppliers and the computer
market is divided into market segments. Traders have
to procure components from suppliers and sell assem-
bled computers to customers. Only limited information
is available to traders, such as yesterday’s maximum
and minimum market prices, which makes predicting
the market a non-trivial task.

TAC SCM has attracted researchers from all over the
world, because its environment is designed in such a
way that it contains many characteristics that can be
found in real-life supply chains, such as the behavior
of unpredictable opponents and interdependent chain
entities. The simulated supply chain of the TAC SCM
game offers many research opportunities into various
subjects, such as price setting strategies and prediction
strategies for competitor behavior or market character-
istics and developments.

The paper is organized as follows. First, we con-
tinue with introducing the existing economic sales-
based regime model. Subsequently, we define and eval-
uate a new economic regime framework based on both



sales and procurement information. Finally, conclu-
sions are drawn and future work is suggested.

Background and Related Work

Regime identification and prediction using the economic
regime model are used for making sales decisions in the
MinneTAC agent (Ketter et al. 2009). Every day, for
each individual product, the probabilities of current and
future economic regimes are determined, which are used
for forecasting price densities. With the help of the
current and future price density we are able to predict
market prices, market price trends, and the customer
acceptance probability for specific offers. Regimes are
used for both tactical and strategic decisions, such as
product pricing and production planning.

The regimes in the TAC SCM game can be consid-
ered as a set of characteristics which apply to a certain
period of days. The identification and prediction of
regimes is done so that different behavior can be mod-
eled for different situations, which is also referred to as
a switching model. The agent’s problems can be solved
differently depending on the state of its environment,
which influences the accuracy of the agent’s predictions
and the amount of profit made.

Regimes are used in multiple contexts, such as polit-
ical and economic contexts. In general, a regime refers
to a set of conditions. In economic context, regimes are
also referred to as business cycle phases. These phases
are commonly used in macro-economic environments,
as is the case in (Osborn and Sensier 2002). How-
ever, in (Ketter 2007), regimes are applied in the micro-
economic environment of the TAC SCM game. This
makes sense, since an economic environment is simu-
lated and one can capture (economical) characteristics
in economic regimes, enabling an agent to reason based
on certain market conditions.

Other applications of regimes can be found in elec-
tricity markets. These markets often are oligopolies,
which is also the case in TAC SCM. Becker et al.
and Mount et al. both model spikes in electricity
prices as a regimes switching model, based on Markov
switching models (Becker, Hurn, and Pavlov 2007;
Mount, Ning, and Cai 2006).

Over the past decades, research has been into iden-
tifying and predicting regimes, but also into regime
changes. Regime changes are important events in time
series, in which one can obtain strategic advantage if
they are identified or predicted correctly. Recently,
Massey and Wu (2005) emphasize this importance of
the ability to detect and respond to regime shifts, as it
is critical to economic success. If these shifts are not de-
tected, this could lead to lower profits. Also, Massey et
al. elaborate on the causes of under- and overreaction
to (predicted) regime shifts.

The foundation of research into regime shifts lies in
1989, when Hamilton published a paper about model-
ing regime changes using postwar U.S. real GNP as in-
put (Hamilton 1989). Hamilton used Markov matrices

to observe regime shifts, by drawing probabilistic infer-
ence about whether and when they may have occurred
based on the observed behavior of series.

The algorithms of the regime model implemented
by the MinneTAC agent, which identifies and predicts
economic regimes, are based on economic theory and
incorporate some adapted techniques. The model’s
regimes are identified as extreme scarcity, scarcity, a
balanced situation, oversupply, and extreme oversup-
ply (Ketter 2007). We define the regime set as R =
{ES, S, B, O,EO}. Each day of the game, the regime
probability distribution is determined and a regime
prediction is made. Thus, each regime Rk in set R
∀k = 1, . . . , M (where M = 5) has a certain likelihood
to hold as dominant regime. The regime probabilities
in set R sum up to 1 and the regime with the highest
probability is considered to be dominant.

Currently, the regime model identifies and predicts
economic regimes based on yesterday’s normalized
mean (mid-range) sales price (Ketter et al. 2007) for an
arbitrary day d, which is also referred to as npd−1, as
well as on quantities. Also, for some predictions, the en-
tire history of normalized mean sales prices is used. The
problem is that in supply chains, data for the day itself
is not available, and thus identification is done based on
historical information, whereas predictions are made for
day d up to planning horizon h (usually twenty days).

The data the model is based on is normalized, as
normalization allows for machine learning across mar-
kets, i.e., over different products, which can be com-
pared qualitatively, and it enables whole market fore-
casts. Also, the range of the variable is fixed and thus
known beforehand, which simplifies computations.

Regime identification is currently done by offline
and online machine learning. Offer acceptance prob-
abilities associated with given product prices (approx-
imated using a Gaussian Mixture Model (Tittering-
ton, Smith, and Makov 1985)), derived from observ-
able historical and current sales market data, are clus-
tered offline using the K-Means algorithm (MacQueen
1967), which yields distinguishable statistical patterns
(clusters). These clusters are labeled with the proper
regimes after correlation analyses. Regime probabili-
ties, which are indicative of how market conditions are,
are determined by calculating the normalized price den-
sity of all clusters, given sales prices.

There are several techniques for predicting regimes,
each of which is most suitable for a specific time span.
Today’s regimes can be predicted based on exponen-
tially smoothed price predictions, as extensively elabo-
rated in (Ketter et al. 2008). Short-term regime pre-
diction for tactical decision making is done by using a
Markov prediction process. This process is based on
the last normalized smoothed mid-range price. To this
end, Markov transition matrices, which are created of-
fline by a counting process over past games, are being
used. Long-term regime prediction is done by using a
Markov correction-prediction process. This process is
almost equal to the short-term regime prediction, but



is based on all normalized smoothed mid-range prices
up and until the previous day, instead of just the last
normalized smoothed mid-range price.

Extending the Regime Model
We extend the regime model as introduced by Ketter
et al. (2009) with procurement information. Our model
differentiates from the model introduced in (Ketter et
al. 2009) in the fact that it is based on procurement
information, and not solely on sales information. In or-
der to be able to select the most promising procurement
variable, we apply the information gain metric (An-
drews et al. 2007) to a data set containing procure-
ment information on prices, quantities, offers, orders,
and requests for quotation (RFQs) gathered from his-
torical game data1. We now continue with discussing
some details of the information gain metric.

Information Gain
The information gain is an entropy-based metric that
indicates how much better we can predict a specific tar-
get by knowing certain features. In our case, the target
is the dominant regime and the features are procure-
ment variables. According to Mitchell (Mitchell 1997),
the entropy is a commonly used measure in informa-
tion theory, which characterizes the purity of an arbi-
trary collection of examples. Let W be a collection of
game results, numW the number of possible values of W
(i.e., regimes), and P (w) the probability that W takes
on value w. Assuming a uniform probability distribu-
tion, the latter probability is equal to the proportion of
W belonging to class w. The entropy of a collection of
game results, entropy (W ), is defined as

entropy (W ) =
numW∑
w=1

−P (w) log2 P (w) . (1)

Now let V be an attribute (procurement variable),
numV the number of possible values of V , P (v) the
probability that V takes on value v, and P (w|v) the
probability that W takes on value w, given v. The
entropy of a collection of game results W given an at-
tribute V , entropy (W |V ), is defined as

entropy (W |V ) =
numV∑
v=1

P (v)

(
numW∑
w=1

−P (w|v) log2 P (w|v)

)
. (2)

Using (1) and (2), the information gained on outcome
W from attribute V , gain (W,V ), can be calculated us-
ing

gain (W,V ) = entropy (W )− entropy (W |V ) . (3)
1Data set contains 2007 Semi-Finals games played on

the SICS tac5 server (IDs: 9321–9328), 2007 Finals games
played on the SICS tac3 server (IDs: 7306–7313), 2008
Semi-Finals games played on the University of Minnesota’s
(UMN) tac02 server (IDs: 761–769), and 2008 Finals games
played on the UMN tac01 server (IDs: 792–800).

Here, the entropy of a collection of game results W
given an attribute V is subtracted from the entropy
of W . For more information on the calculation of the
information gain, see (Andrews et al. 2007). Apply-
ing the information gain metric to several possible pro-
curement variables using our data set results in Table 1.
The higher the score, the more information the variable
adds to the model.

Variable Gain
Offer price 0.7393
Order price 0.5400
RFQ lead time 0.5106
RFQ reserve price 0.4909
Ratio orders / offers 0.4555
Order quantity 0.4310
RFQ quantity 0.3901
Demand 0.3833
Offer quantity 0.3174

Table 1: Information gain scores for several procure-
ment variables.

The latter table shows that component offer prices
(recalculated on a per-product basis) are most likely
to improve the predictive capabilities of the regime
model. Therefore, we add these component offer prices,
to which we refer to as op, to the existing regime model.
These prices result from all requests for quotation in a
TAC SCM game. These requests include requests for
short-term delivery (e.g., 5 days) as well as long-term
delivery (e.g., 50 days).

Regime Model Variables
As both regime identification and prediction are based
on normalized sales prices, this section introduces a
mathematical formulation of the normalized price np
for product g, npg, on day d, which is calculated as

npg =
priceg

asmCostg +
∑numPartsg

j=1 nomPartCostg,j

, (4)

using the product price priceg and the nominal manu-
facturing costs for each component j belonging to prod-
uct g, nomPartCostg,j , respectively.

The estimated normalized mean price can be volatile
and lacks information on trends. Therefore, (exponen-
tial) smoothing can be applied, resulting in yesterday’s
smoothed normalized minimum and maximum prices
ñpmin

d−1 and ñpmax
d−1 . Equations (5) through (7) show the

smoothing process using a Brown linear exponential
smoother (Brown, Meyer, and D’Esopo 1961), where
α is a smoothing factor determined by a hill-climbing
procedure which minimizes the variance of ñpmin

d−1.

ñpmin′
d−1 = α · npmin

d−1 + (1− α) · ñpmin′
d−2 , (5)

ñpmin′′
d−1 = α · ñpmin′

d−1 + (1− α) · ñpmin′′
d−2 , (6)

ñpmin
d−1 = 2 · ñpmin′

d−1 − ñpmin′′
d−1 . (7)



Here, two price components are smoothed separately,
after which they are combined. This way, changes in
the mean and trend can be captured. Brown linear ex-
ponential smoothing is applied, since the trend as well
as the mean vary over time. The calculation of ñpmax

d−1
is done by analogy with (5) through (7). Now, yester-
day’s exponentially smoothed normalized price on an
arbitrary day d can be calculated by averaging yester-
day’s exponentially smoothed normalized minimum and
maximum prices, i.e., ñpd−1 = 0.5 · ñpmin

d−1 +0.5 · ñpmax
d−1 .

We extend the regime model with the mean compo-
nent offer price for product g, opg, on day d, such that

opg =
∑numS

s=1

∑numCg

c=1 opg,s,c

numOpg

, (8)

where numS refers to the number of suppliers, numCg

refers to the number of components for product g, and
numOpg represents the number of entries of the pro-
curement variable. Thus, the mean component offer
price is calculated by means of a counting process over
all component prices. These prices are extracted from
all requests for quotation related to a specific product
send on an arbitrary day.

Because we would like the variable to include some
information about other preceding days as well, so
that it represents a trend instead of an event, we ap-
ply an exponential smoother to the variable. The
smoothed value of yesterday’s product-based compo-
nent offer price, õpd−1, is calculated as shown in (9),
where β represents a smoothing factor and is deter-
mined using a hill-climbing procedure which minimizes
the variance of õpd−1:

õpd−1 = β · opd−1 + (1− β) · õpd−2 . (9)

Smoothing is done by taking a certain percentage (β)
of yesterday’s value of op. Then, the remaining per-
centage is taken of the previous (smoothed) value of
variable op, i.e., the day before yesterday’s value, af-
ter which both values are added. This is a less complex
way of smoothing than applies for the normalized mean
sales price, though it still smoothes out the variable’s
possible volatility.

Regime Identification
The existing regime model is based on a Gaussian Mix-
ture Model (GMM) (Titterington, Smith, and Makov
1985) with a fixed number (N) of Gaussian compo-
nents. A GMM is used, since it is able to approximate
arbitrary density functions. Also, a GMM is a semi-
parametric approach which allows for fast computing
and uses less memory than other approaches (Ketter et
al. 2009). In the current regime model, fixed means,
µi, which are equally distributed, and variances, σ2

i ,
where i is used as an index to point to a component,
∀i = 1, . . . , N , are used. The fixed means and variances
are chosen so that adjacent Gaussians are two standard
deviations apart (Ketter et al. 2008), are used. This
might lead to good results when fitting a model on one

dimension, but after adding a dimension to the model,
fixed means and variances might prevent the GMM to
reach a good fit. Therefore, we do not constrain the
means and variances for now.

As is the case with the current model, we apply the
Expectation-Maximization algorithm to determine the
Gaussian components of the GMM and their prior prob-
abilities, P (ζi). The Gaussian components are, unlike
the components of the current model, based on both np
and op. For now, the number of Gaussian components,
N , is equal to 3, because this helps visualizing and ex-
plaining the main concepts of the model. We define
the bivariate density of the sales and procurement offer
prices as

p (np ∩ op) =
N∑

i=1

P (ζi) p (np ∩ op|ζi) . (10)

This density is equal to the sum of all Gaussian com-
ponents p (np ∩ op|ζi) multiplied by their prior prob-
abilities P (ζi). We define a typical two-dimensional
Gaussian component as
p (np ∩ op|ζi) = p

(
np ∩ op|{µnpi

∩ µopi
∩ σnpi

∩ σopi

})

= Ae
−

(
(np−µnpi )

2σ2
npi

+
(op−µopi )

2σ2
opi

)

, (11)
where A is the amplitude of the Gaussian density, µnpi

and µopi
are the means of the i-th Gaussian on the

normalized mean price and mean offer price axes, and
σnpi

and σopi
are their respective standard deviations.

Figure 1 shows a two-dimensional GMM created us-
ing a training set2 and the equations discussed above.
For sake of illustration, the model contains three Gaus-
sian components, and is trained with a maximum of fif-
teen hundred iterations on data on the high market seg-
ment. Experiments show that using less iterations does
not guarantee a well fit model. Figures 1(a) and 1(c)
show projections of the individual Gaussians and the
density of the normalized mean sales price and mean
offer price onto the axes of both variables, whereas the
density is shown as a surface in Figure 1(b).

In order to find patterns in these probabilities, we
need to calculate to which extent each of the proba-
bilities is a member of each Gaussian component. The
posterior probability for each component P (ζi|np ∩ op)
follows from (10) after applying Bayes’ rule:

P (ζi|np ∩ op) =
P (ζi) p (np ∩ op|ζi)∑N

j=1 P (ζj) p (np ∩ op|ζj)
,

∀i = 1, . . . , N . (12)
Equation (12) applies for each Gaussian, and thus

the vector of posterior probabilities for the two-
dimensional Gaussian Mixture Model can be described

2Training set contains 2007 Semi-Finals games played on
the SICS tac5 server (IDs: 9323–9327), 2007 Finals games
played on the SICS tac3 server (IDs: 7308–7312), 2008
Semi-Finals games played on the UMN tac02 server (IDs:
763–768), and 2008 Finals games played on the UMN tac01
server (IDs: 794–799).



(a) (b) (c)

Figure 1: A two-dimensional GMM based on np and op, using three Gaussian components, where (a) and (c) show
projections of the Gaussian components used in the model demonstrated in (b). Each individual Gaussian has its
own density function, and combining these densities results into a single price density.

as η (np ∩ op) = [P (ζ1|np ∩ op) , . . . , P (ζN |np ∩ op)].
For each combination of normalized mean prices and
component offer prices, we can calculate η (np ∩ op) us-
ing the fitted Gaussian Mixture Model.

We need to find clusters within the posterior prob-
abilities, as they can be linked to regimes, because
they each describe certain conditions and characteris-
tics. Clustering the posterior probabilities in M clus-
ters is done using K-Means clustering. We tested differ-
ent clustering algorithms, such as spectral clustering,
which resulted in similar clusters. Clustering is done in
fifteen replicates, using a maximum of one hundred it-
erations. Experiments show that this maximum allows
the algorithm to converge nicely on our data set. The
squared Euclidean distance measure is used to measure
distances to the cluster centers for each data point. Fig-
ure 2 shows results of applying the K-Means clustering
algorithm to the GMM we have fit to our data on high-
range products with three clusters.

We link the cluster centers P (ζ|Rk) to regimes, but
these clusters do not tell us which cluster represents
which regime. Let us assume for now we know how to

Figure 2: Three identified clusters in the posterior prob-
abilities, P (ζi|np ∩ op), of a two-dimensional GMM.

assign the proper regime label to each cluster. Then
we can rewrite p (np ∩ op|ζi) by analogy with (10) in a
form that shows the dependence of the normalized sales
price and mean component offer price on the regime Rk.

p (np ∩ op|Rk) =
N∑

i=1

P (ζi|Rk) p (np ∩ op|ζi) ,

∀k = 1, . . . ,M . (13)

In (13), P (ζi|Rk) refers to the N by M matrix re-
sulting from the K-Means algorithm, and p (np ∩ op|ζi)
refers to the individual Gaussians. When applying
Bayes’ rule, we obtain the probability of regime Rk de-
pendent on the sales and offer prices, as defined in (14).

P (Rk|np ∩ op) =
P (Rk) p (np ∩ op|Rk)∑M
j=1 P (Rj) p (np ∩ op|Rj)

,

∀k = 1, . . . , M . (14)

Figure 3 shows a plot of the regime probabilities
(given normalized sales price and component offer price)

Figure 3: Regime probabilities, P (Rk|np ∩ op), for
products of the high segment.



for products of the low segment, resulting from a Gaus-
sian Mixture Model and clustering its posterior proba-
bilities in three clusters. We observe that under differ-
ent conditions, different regimes are dominant, as differ-
ent clusters have high probabilities for different combi-
nations of component offer and sales order prices. Thus,
each identified regime is dominant for certain combina-
tions of both variables the model is based on.

Online, regime probabilities can be calculated (inter-
polated) for different combinations of normalized mean
prices and procurement-side offer prices using the data
that is displayed in Figure 3. Then, the dominant
regime R̂r on an arbitrary game day d is

R̂r s.t. r = argmax ~P (R̂k|ñpd−1 ∩ õpd−1) . (15)
1≤k≤M

We conclude that in general, the regime identification
still works similar to the existing appoach. However,
a dimension has been added to the Gaussian Mixture
Model, causing differently structured probability densi-
ties as well as regime clusters. This requires reformu-
lating the entire regime identification model.

Regime Prediction
We already introduced three techniques for regime pre-
diction, each of which has its own characteristics and
optimal time span to predict regimes for. This section
continues with discussing these techniques. First, we
will elaborate on the exponential smoother process, af-
ter which we will discuss Markov processes.

The exponential smoother regime prediction process
is more reactive to the current market condition than
any other method, because the exponential smoother
process takes yesterday’s information as input. This
information is smoothed with information on preceding
days to reduce volatility.

The prediction process calculates a trend, t̃r
min

d−1, in
the minimum normalized mean sales price by using (5)
and (6), and smoothing factor γ: t̃r

min

d−1 = γ
1−γ ·(ñpmin′

d−1 −
ñpmin′′

d−1 ). The exponentially smoothed maximum nor-
malized trend, t̃r

max

d−1 , is calculated in a similar way. Us-
ing the minimum and maximum trends, the mid-range
trend of the sales price can be calculated by averaging
both values, and thus t̃r

np

d−1 = 0.5 · t̃rmin

d−1 + 0.5 · t̃rmax

d−1 .
Using yesterday’s value and the mid-range trend of

sales prices, one can estimate the value of sales prices
n days in the future as shown in (16), where h is the
planning horizon:

ñpd+n = ñpd−1+(1 + n)· t̃rnp

d−1, ∀n = 0, . . . , h . (16)

Now that we have defined a way to predict future val-
ues of np, we can also formulate a way to predict future
values of op. This is also done using a trend, as the ap-
proach performs good in the current model and we pre-
fer to keep things similar to the current approach. Also,
it is beyond our scope to look into alternatives. How-
ever, the calculation is somewhat different from what

we have discussed for np, because of the fact that the
procurement variable (i.e., component offer prices) rep-
resents a mean value and we do not have minimum and
maximum values at hand. Also, different smoothing is
applied to offer prices than to sales prices, which means
the two Brown linear exponential smoothing compo-
nents used for calculating the sales price trend are not
available for our procurement variable.

We calculate the trend of õpd−1, by computing the
difference between yesterday’s smoothed component of-
fer price and the smoothed offer price of the day before
yesterday, i.e., t̃r

op

d−1 = õpd−1 − õpd−2. Then, future
values for n days into the future up to planning horizon
h are calculated similar to future values of ñp, as shown
in (17). Here, the calculated trend is added 1+n times
to the last known value of the component offer prices.
We express the future values of õp mathematically as

õpd+n = õpd−1 +(1 + n) · t̃ropd−1, ∀n = 0, . . . , h . (17)

Using the future values for day d + n of ñp and õp,
the probability for each regime (given both prices) for
n days in the future can be calculated similar to (14),
where the density of the variables dependent on regime
Rk is calculated using (13) by marginalizing over the
individual Gaussians and cluster centers:

P
(
R̂k|ñpd+n ∩ õpd+n

)
=

p
(
ñpd+n ∩ õpd+n|R̂k

)
P (Rk)

∑M
j=1 p

(
ñpd+n ∩ õpd+n|R̂j

)
P (Rj)

,

∀k = 1, . . . , M . (18)

Making short-term and long-term regime predictions
can be done using Markov prediction and correction-
prediction processes (Isaacson and Madsen 1976). In
contrast to the exponential smoother process where fu-
ture prices are predicted, resulting indirectly in predic-
tions of future regimes, regimes are predicted directly.
Markov processes are less responsive to current market
situations, as they make use of a history of events.

For short-term regime predictions, a Markov predic-
tion process is used. This process is based on the last
price measurement and on a Markov transition matrix
T (rd+n|rd). This matrix is created by means of a count-
ing process on offline data and contains posterior prob-
abilities of transitioning to regime rd+n on day d + n
(i.e., n days into the future), given rd, which is the
current regime. Note that we introduce the symbol r
for denoting regimes, to emphasize a focus shift, as we
are not looking at the individual regimes in the way we
were looking at them until now. Now, the regimes rep-
resent rows and columns in a Markov transition matrix
and we use probability vectors combined with transition
matrices, instead of single regime probabilities.

Ketter et al. distinguish between two types of Markov
predictions: n-day prediction and repeated one-day pre-
diction. The first type is an interval prediction, where



for each day n up to planning horizon h a Markov tran-
sition matrix is computed offline (per product, or at
whatever level of detail the regime model is defined),
whereas the second type only needs one Markov tran-
sition matrix (per product). This matrix is repeated n
times up to planning horizon h.

The calculation of the n-day prediction for n days
ahead is performed recursively as

~P (r̂d+n|ñpd−1 ∩ õpd−1) =
∑
rd+n

. . .
∑
rd−1

{
~P (r̂d−1|ñpd−1 ∩ õpd−1)·

Tn (rd+n|rd−1)
}

,

∀n = 0, . . . , h , (19)

where the previous (identified or predicted) poste-
rior regime probabilities dependent on the normalized
mean sales prices and normalized mean component offer
prices are multiplied with the applicable Markov tran-
sition matrix. The calculation of the repeated one-day
prediction is done similarly, as shown in (20). However,
only one transition matrix is used, T0 (rd|rd−1), which is
repeated n times for predictions of n days in the future.

~P (r̂d+n|ñpd−1 ∩ õpd−1) =
∑
rd+n

. . .
∑
rd−1

{
~P (r̂d−1|ñpd−1 ∩ õpd−1)·

n∏
t=0

T0 (rd|rd−1)
}

,

∀n = 0, . . . , h . (20)

Long-term predictions are made using a Markov cor-
rection-prediction process. The latter process is almost
similar to the Markov prediction process we already dis-
cussed. The difference is that the long-term prediction
process is modeled based on the entire history of prices,
instead of just the last price measurement. Hence, we
need to extend the probability of regime r̂d−1 dependent
on ñpd−1 and õpd−1 so that it incorporates the entire
history of the values of ñp and õp. This correction is
done by applying a recursive Bayesian update to the
identified regime probabilities. Then, predictions for
today are based on the corrected regime probabilities
on day d− 1, while predictions for n days in the future
are done recursively. Equation (21) defines the n-day
variant of the Markov correction-prediction process.

~P
(
r̂d+n|

{
ñp1, . . . , ñpd−1

} ∩ {
õp1, . . . , õpd−1

})
=

∑
rd+n

. . .
∑
rd−1

{
~P

(
r̂d−1|

{
ñp1, . . . , ñpd−1

}∩

{
õp1, . . . , õpd−1

}) · Tn (rd+n|rd−1)
}

,

∀n = 0, . . . , h . (21)

The same principles apply to the calculation of the
repeated one-day correction-prediction. Again, the dif-
ference is the usage of the Markov transition matrices.

~P
(
r̂d+n|

{
ñp1, . . . , ñpd−1

} ∩ {
õp1, . . . , õpd−1

})
=

∑
rd+n

. . .
∑
rd−1

{
~P

(
r̂d−1|

{
ñp1, . . . , ñpd−1

}∩

{
õp1, . . . , õpd−1

}) ·
n∏

t=0

T0 (rd|rd−1)
}

,

∀n = 0, . . . , h . (22)

Note that the Markov transition matrices which
are being used in (21) and (22) (Tn (rd+n|rd−1) ∀n =
0, . . . , h and T0 (rd|rd−1), respectively) are the same
matrices as used in (19) and (20).

Performance Evaluation
Initial offline experiments show that a five-regime model
is preferred over a three-regime model, as the regimes
are identified and predicted more accurately. In these
experiments, we train regime models using our training
data, after which the performance is evaluated using a
test set3.

Regime Identification Evaluation
We evaluate each model on several aspects. Correla-
tions between identified dominant regime and economic
regime identifiers, such as factory utilization and fin-
ished goods, are evaluated to test the feasibility of the
clusters that have been found. Finally, the feasibility of
the course of regime probabilities is evaluated.

The best performing regime model is configured with
five regimes and ten Gaussian components, with which
we continue our experiments. Figure 5 shows an exam-
ple of the course of its identified regime probabilities
through an arbitrary TAC SCM game of a typical agent
in the mid-range product segment. Regimes are clearly
dominant for a certain time and regimes do not switch
too often, which is also visible in Figure 4. Here, the
daily dominant regimes of the same game are displayed,
together with the course of the normalized mean sales
price and some other economic identifiers.

Regime labels are assigned to the cluster centers by
means of correlation studies, of which the results are
shown in Figure 6. In these studies, seventy-five hun-
dred data points drawn from the training set are used to
calculate the Pearson correlation (Fisher 1925) between
the identified dominant regime and economic regime
identifiers. This number of samples is large enough to
ensure p-values below 0.01. Characteristics of the clus-
ters are in line with the human interpretation of the

3Test set contains 2007 Semi-Finals games played on the
SICS tac5 server (IDs: 9321, 9322, 9328), 2007 Finals games
played on the SICS tac3 server (IDs: 7306, 7307, 7313), 2008
Semi-Finals games played on the UMN tac02 server (IDs:
761, 762, 769), and 2008 Finals games played on the UMN
tac01 server (IDs: 792, 793, 800).



Figure 4: Overview of the dominant regimes during a TAC SCM game, together with the course of the normalized
mean sales price and other economic identifiers, i.e., finished goods and factory utilization.

regime definitions. For example, during scarcity, there
is a shortage of finished goods, and sales prices are high.

Regime Prediction Evaluation

We evaluate how the agent would predict the proba-
bilities for five regimes with our ten-Gaussian GMM
using our test set that contains historical data, and we
compare these results to those of the current imple-
mentation of the regime model on the same test set. In
our experiments, we evaluate three product segments,
i.e., the low-, mid-, and high-range segment, to get a
rough indication of the performance. This performance
is measured in terms of the percentage of correctly pre-
dicted regimes and regime switch occurrences. We de-
fine the correct regime as the identified regime.

Figure 5: Course of identified regime probabilities over
game time in an arbitrary TAC SCM game.

Regimes are predicted using a combination of the
prediction methods we have discussed. Today’s
regime probabilities are predicted using an exponen-
tial smoother process. Short-term predictions (up to
ten days into the future) are done using a Markov pre-
diction process. We choose to use the n-day variant,
since repeated one-day prediction tends to converge to
a stationary distribution sooner. Finally, for long-term
predictions up to twenty days into the future, we ap-
ply a Markov correction-prediction process. The upper
bound (or planning horizon h) is set to twenty days,
because production scheduling is set up every day for
the next twenty days. This possibly leads to new or
more accurate insights in future developments.
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Figure 6: Correlation coefficients of five identified
regime clusters, resulting from a two-dimensional Gaus-
sian Mixture Model with ten individual Gaussians cre-
ated based on mid-range product data.



Looking at the prediction performance of the selected
regime model (compared to the performance of the cur-
rent model), one can observe small improvements, as
well as small deteriorations. This observation is sup-
ported by Table 2. Here, the accuracy measured in a
percentage of correctly predicted regimes and regime
switches (within plus or minus two days). The table
shows the performance of the new model compared to
the current model for three market segments (i.e., low-
range, mid-range, and high-range products). The score
of the best performing model is printed bold.

Correct Segment New model Existing model
Regime Low 46.43% 51.86%

Mid 40.63% 52.93%
High 40.48% 41.91%

Time Low 48.68% 52.78%
Mid 53.00% 43.44%
High 50.93% 46.30%

Table 2: Prediction performances of a two-dimensional
GMM with five clusters and ten individual Gaussians
(new model) compared to the performance of a one-
dimensional five-cluster GMM with sixteen individual
Gaussians (existing model).

The differences between the scores of the existing
model as presented in Table 2 and the results presented
in (Ketter et al. 2006) can be caused by the fact that
Ketter et al. only apply a Markov prediction process for
each prediction. Furthermore, we experiment on 2007
and 2008 data, which contains different games than the
ones used in (Ketter et al. 2006). This may result in
market conditions which are harder to predict, because
agents are getting more advanced and more competitive
every year, which can cause other decisions to be made
under the same conditions and thus games could have
different characteristics.

On average, our model predicts regime switches more
accurately than the current model. This indicates that
the addition of procurement information does affect the
prediction performance positively. However, regimes
are predicted with a lower accuracy than the current
model. Though overall, the differences between the per-
formances are small, and therefore we conclude that the
addition of procurement information in the proposed
way does not affect the prediction performance greatly.

Conclusions and Future Work
We have added procurement information (component
offer prices) to a sales-based regime model, which is
used for predicting price density probabilities in a sim-
ulated supply chain. The regime model has been ex-
tended by adding a dimension to the Gaussian Mix-
ture Model which is at the core of the economic regime
model. After evaluating the performance of our model
through experiments with the MinneTAC agent, which
competes in the TAC SCM game for several years, we
find that the new regime model has a similar overall

predictive performance as the existing model. Regime
switches are predicted more accurately, whereas the
prediction accuracy of dominant regimes is slightly
worse.

However, by adding procurement information, we
have enriched the model and we expect the new regime
model to yield good results once implemented in the
MinneTAC agent. The agent will be able to make de-
cisions based on more information that is indicative of
how market conditions are. Therefore, the agent will
classify market conditions differently and more well-
considered, which could lead to improvements. Also,
our model seems to be as robust as the current model,
and thus, maybe new types of decision making come
within reach. Furthermore, we see opportunities for
applications in the procurement market, which is worth
further research.

For further research, we suggest to run tests against
other competitors in the TAC SCM game to verify the
model. We are currently looking into the use of time-
delayed procurement information, as procurement in-
formation could be a leading indicator for the sales
market. Subsequently, more or different procurement
information can serve as a basis to the model. Not only
using other data (e.g., offer quantities) or time-delayed
data, but also applying other smoothing techniques to
offer prices and normalizing data fall within the scope
of the meaning of different procurement information.
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